CSCI5070 Advanced Topics in Social Computing

Irwin King

The Chinese University of Hong Kong

king@cse.cuhk.edu.hk

©2012 All Rights Reserved.

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems
- Web Site Recommendation

Social Recommendation Using Probabilistic Matrix Factorization

[Hao Ma, et al., CIKM2008]

Challenges

Data sparsity problem

YAHOO! MOVIES

My Movies: gabe_ma Edit Profile

Challenges

My Movie Ratings The Pursuit of Happyness (PG-13, 1 hr. 57 min.)

Buy DVD | Add to My Lists

Yahoo! Users: B+ 38992 ratings B- 13 reviews The Critics:

🖸 My Rating: A+

My Blueberry Nights (PG-13, 1 hr. 30 min.) Buy DVD | Add to My Lists Yahoo! Users: B- 756 ratings The Critics B- 7 reviews 🖸 My Rating: A+

The Lord of the Rings: The Fellowship of the Ring Buy DVD | Add to My Lists Yahoo! Users: A- 110957 ratings The Critics: 15 reviews Α

🖸 My Rating: A

Finding Nemo (G, 1 hr. 40 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 137394 ratings The Critics: A- 14 reviews

Cold Mountain (R, 2 hrs. 35 min.) Buy DVD | Add to My Lists

Yahoo! Users:	в	38986 ratings		
The Critics:	B+	10 reviews		

🖸 My Rating: B+

🖸 My Rating: A

Shrek 2 (PG, 1 hr. 32 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 150368 ratings The Critics: 15 reviews B

Number of Ratings per User

Extracted From Epinions.com 114,222 users, 754,987 items and 13,385,713 ratings

Challenges

Traditional recommender systems ignore the social connections between users

Recommendations from friends

Motivations

- "Yes, there is a correlation from social networks to personal behavior on the web"
- Parag Singla and Matthew Richardson (WWW'08)
 - Analyze the who talks to whom social network over 10 million people with their related search results
 - People who chat with each other are more likely to share the same or similar interests
- To improve the recommendation accuracy and solve the data sparsity problem, users' social network should be taken into consideration

Problem Definition

Social Trust Graph

	v_1	v_2	<i>v</i> ₃	\mathcal{V}_4	<i>V</i> ₅	v_6
u_1		5	2		3	
u_1 u_2 u_3 u_4	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3

User-Item Rating Matrix

User-Item Matrix Factorization

R. Salakhutdinov and A. Mnih (NIPS'08)

SoRec

SoRec

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2} + \frac{\lambda_{Z}}{2} \|Z\|_{F}^{2},$$

SoRec

$$\frac{\partial \mathcal{L}}{\partial U_i} = \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j$$

+ $\lambda_C \sum_{j=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i,$
 $\frac{\partial \mathcal{L}}{\partial V_j} = \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j,$
 $\frac{\partial \mathcal{L}}{\partial Z_k} = \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k,$

Complexity Analysis

- For the Objective Function $O(\rho_R l + \rho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial U}$ the complexity is $O(\rho_R l + \rho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial V}$ the complexity is $O(\rho_R l)$
- For $\frac{\partial \mathcal{L}}{\partial Z}$ the complexity is $O(\rho_C l)$
- In general, the complexity of our method is linear with the observations in these two matrices

Experimental Analysis

Table: MAE comparison with other approaches (A smaller MAE value means a better performance)

Training Data	Dimensionality $= 5$				Dimensionality $= 10$			
	MMMF	PMF	CPMF	SoRec	MMMF	PMF	CPMF	SoRec
99%	1.0008	0.9971	0.9842	0.9018	0.9916	0.9885	0.9746	0.8932
80%	1.0371	1.0277	0.9998	0.9321	1.0275	1.0182	0.9923	0.9240
50%	1.1147	1.0972	1.0747	0.9838	1.1012	1.0857	1.0632	0.9751
20%	1.2532	1.2397	1.1981	1.1069	1.2413	1.2276	1.1864	1.0944

MMMF: J.D.M Rennie and N. Srebro (ICML'05)

PMF & CPMF: R. Salakhutdinov and A. Mnih (NIPS'08)

Epinions: 40, 163 users who rated 139,529 items with totally 664,824 ratings

Disadvantages of SoRec

•Lack of interpretability

Does not reflect the real-world process

SoRec

Learning to Recommend with Social Trust Ensemble

[Hao Ma, et al., SIGIR2009]

Ist Motivation

Ist Motivation

Ist Motivation

• Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

2nd Motivation

2nd Motivation

• Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.

Motivations

 Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

• Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.

• One user's final decision is the balance between his/her own taste and his/her trusted friends' favors.

User-Item Matrix Factorization

[R. Salakhutdinov, et al., NIPS2008]

Recommendation with Social Trust Ensemble

Recommendation with Social Trust Ensemble

$$\mathcal{L}(R, S, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2},$$
(15)

Complexity

In general, the complexity of this method is linear with the observations the user-item matrix

Epinions Dataset

- 51,670 users who rated 83,509 items with totally 631,064 ratings
- Rating Density 0.015%
- The total number of issued trust statements is 511,799

Metrics

• Mean Absolute Error and Root Mean Square Error

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \hat{r}_{i,j}|}{N}$$

$$RMSE = \sqrt{\frac{\sum_{i,j} (r_{i,j} - \hat{r}_{i,j})^2}{N}}$$

Comparisons

Table III: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

Training	Motrico	Dimensionality = 5 JserMeanItemMean NMF PMF Trust SoRec RSTE							
Data	wietrics	UserMean	ItemMean	NMF	PMF	Trust	SoRec	RSTE	
90%	MAE	0.9134	0.9768	0.8738	0.8676	0.9054	0.8442	0.8377	
	RMSE	1.1688	1.2375	1.1649	1.1575	1.1959	1.1333	1.1109	
	MAE	0.9285	0.9913	0.8975	0.8951	0.9221	0.8638	0.8594	
	RMSE		1.2584	1.1861	1.1826	1.2140	1.1530	1.1346	
Training	Motrice	Dimensionality = 10UserMean ItemMeanNMFPMFTrustSoRecRSTE							
Data	wietrics	UserMean	ItemMean	NMF	PMF	Trust	SoRec	RSTE	
90%	MAE	0.9134	0.9768	0.8712	0.8651	0.9039	0.8404	0.8367	
	RMSE	1.1688	1.2375	1.1621	1.1544	1.1917	1.1293	1.1094	
80%	MAE	0.9285	0.9913	0.8951	0.8886	0.9215	0.8580	0.8537	
	RMSE	1.1817	1.2584	1.1832	1.1760	1.2132	1.1492	1.1256	

NMF ---- D. D. Lee and H. S. Seung (Nature 1999) PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008) SoRec ---- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008) Trust, RSTE ---- H. Ma, I. King and M. R. Lyu (SIGIR 2009)

Performance on Different Users

• Group all the users based on the number of observed ratings in the training data

Performance on Different Users

Impact of Parameter Alpha

MAE and RMSE Changes with Iterations

90% as Training Data

Further Discussion of SoRec

Improving Recommender Systems Using Social Tags

10,000,054 ratings, 95,580 tags

Further Discussion of SoRec

• MAE

Table V: MAE comparison with other approaches on MovieLens dataset (A smaller MAE value means a better performance)

Methods		80% Training	50% Training	30% Training	10% Training
User Mean		0.7686	0.7710	0.7742	0.8234
Item Mean		0.7379	0.7389	0.7399	0.7484
	SVD	0.6390	0.6547	0.6707	0.7448
5D	PMF	0.6325	0.6542	0.6698	0.7430
512	SoRecUser	0.6209	0.6419	0.6607	0.7040
	SoRecItem	0.6199	0.6407	0.6395	0.7026
	SVD	0.6386	0.6534	0.6693	0.7431
10D	PMF	0.6312	0.6530	0.6683	0.7417
10D	SoRecUser	0.6197	0.6408	0.6595	0.7028
	SoRecItem	0.6187	0.6395	0.6584	0.7016

Further Discussion of SoRec

• RMSE

Table VI: RMSE comparison with other approaches on MovieLensdataset (A smaller RMSE value means a better performance)

Methods		80% Training	50% Training	30% Training	10% Training
User Mean		0.9779	0.9816	0.9869	1.1587
Item Mean		0.9440	0.9463	0.9505	0.9851
	SVD	0.8327	0.8524	0.8743	0.9892
5D	PMF	0.8310	0.8582	0.8758	0.9698
50	SoRecUser	0.8121	0.8384	0.8604	0.9042
	SoRecItem	0.8112	0.8370	0.8591	0.9033
	SVD	0.8312	0.8509	0.8728	0.9878
10D	PMF	0.8295	0.8569	0.8743	0.9681
10D	SoRecUser	0.8110	0.8372	0.8593	0.9034
	SoRecItem	0.8097	0.8359	0.8578	0.9019

Further Discussion of RSTE

Relationship with Neighborhood-based methods

- The trusted friends are actually the explicit neighbors
- We can easily apply this method to include implicit neighbors
- Using PCC to calculate similar users for every user

What We Cannot Model Using SoRec and RSTE?

Propagation of trust

• Distrust

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems
- Web Site Recommendation

Recommend with Social Distrust

[Hao Ma, et al., RecSys2009]

Trust vs. Social

Trust-aware

- Trust network: unilateral relations
- Trust relations can be treated as "similar" relations
- Few datasets available on the Web
- Social-based
 - Social friend network: mutual relations
 - Friends are very diverse, and may have different tastes
 - Lots of Web sites have social network implementation

Distrust

- Users' distrust relations can be interpreted as the "dissimilar" relations
 - On the web, user U_i distrusts user U_d indicates that user U_i disagrees with most of the opinions issued by user U_d .
 - What to do if a user distrusts many people?
 - What to do if many people distrust a user?

Distrust

$$\max_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^+(i)} S_{id}^{\mathcal{D}} \| U_i - U_d \|_F^2$$

$$\min_{U,V} \mathcal{L}_{\mathcal{D}}(R, S^{\mathcal{D}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T}V_{j}))^{2} \\ + \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} (-S_{id}^{\mathcal{D}} ||U_{i} - U_{d}||_{F}^{2}) \\ + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Trust

- Users' trust relations can be interpreted as the "similar" relations
 - On the web, user U_i trusts user U_t indicates that user U_i agrees with most of the opinions issued by user U_t .

Trust

$$\min_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^+(i)} S_{it}^{\mathcal{T}} \| U_i - U_t \|_F^2$$

$$\min_{U,V} \mathcal{L}_{\mathcal{T}}(R, S^{\mathcal{T}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^{+}(i)} (S_{it}^{\mathcal{T}} ||U_{i} - U_{t}||_{F}^{2}) + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Trust Propagation

Distrust Propagation?

Experiments

- Dataset Epinions
- 131,580 users, 755,137 items, 13,430,209 ratings
- 717,129 trust relations, 123,670 distrust relations

Data Statistics

Table 1: Statistics of User-Item Rating Matrix of Epinions

Statistics	User	Item
Min. Num. of Ratings	1	1
Max. Num. of Ratings	162169	1179
Avg. Num. of Ratings	102.07	17.79

Table 2: Statistics of Trust Network of Epinions

Statistics	Trust per User	Be Trusted per User
Max. Num.	2070	3338
Avg. Num.	5.45	5.45

Table 3: Statistics of Distrust Network of Epinions

Statistics	Distrust per User	Be Distrusted per User
Max. Num.	1562	540
Avg. Num.	0.94	0.94

Experiments

RMSE

Dataset	Traning Data	Dimensionality	\mathbf{PMF}	SoRec	RWD	RWT
	5%	5D	1.228	1.199	1.186	1.177
	570	10D	1.214	1.198	1.185	1.176
Epinions	10%	$5\mathrm{D}$	0.990	0.944	0.932	0.924
Epimons		10D	0.977	0.941	0.931	0.923
	20%	$5\mathrm{D}$	0.819	0.788	0.723	0.721
	2070	10D	0.818	0.787	0.723	0.720

Impact of Parameters

Alpha = 0.01 will get the best performance! Parameter beta basically shares the same trend!

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems

Comparison

- Trust-aware Recommender systems
 - Trust network
 - Trust relations can be treated as "similar" relations
 - Few dataset available on the web
- Social-based Recommender Systems
 - Social friend network, mutual relations
 - Friends are very divers, and may have different tastes
 - Lots of web sites have social network implementation

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems
- Web Site Recommendation

Web Site Recommendation

[Ma et al., SIGIR 2011]

Traditional Search Paradigm

Web Images Videos Shopping News Maps More | MSN Hotmail Rewards Walnut Creek, California Preferences Sign out Hi Irwin, Bing just got better with 0 sigir vour Facebook friends. Disable · Learn More Web Web News Images Morev RELATED SEARCHES ALL RESULTS 1-10 of 255,000 results · Advanced Bing Rewards Special Inspector Earn Rewards with Bing 9 Welcome to SIGIR | Home General for Irag Join Bing Rewards for free and earn An Iragi fisherman pushes his boat off-shore to depart on his daily fishing trip. View the Reconstruction 250 credits. Report. SIGIR Reports www.sigir.mil SIGIR Poster SIGIR List ACM SIGIR Special Interest Group on Information Retrieval Home Page Welcome to the ACM SIGIR Web site. ACM SIGIR addresses issues ranging from theory to SIGIR 2011 SIGIR 10 user demands in the application of computers to the acquisition, organization ... www.sigir.org SIGIR 2010 Registration home [ACM SIGIR 2010] SIGIR 2009 ACM-SIGIR 2010 was held at UniMail, Geneva, Switzerland between 19th and 23rd of July Proceedings 2010. Thanks to all the participants!!! The story continues with ACM-SIGIR 2011. www.sigir2010.org SEARCH HISTORY Welcome to The 34th Annual ACM SIGIR Conference Search more to see your history Important Dates, 17 Jan 2011 : Abstracts for full research papers due: 24 Jan 2011 : Full research paper submissions due; 28 Jan 2011 : Workshop proposals due See all sigir2011.org Clear all · Turn off About SIGIR About SIGIR The Office of the Special Inspector General for Irag Reconstruction A NARROW BY DATE (SIGIR) is the successor to the Coalition Provisional Authority Office of ... All results www.sigir.mil/about/index.html Past 24 hours SIGIR 2009 Archive | SIGIR'09 Past week The SIGIR 2009 conference ran July 19-23, 2009, in Boston, Massachusetts, at the Past month Sheraton Boston Hotel and Northeastern University. The conference was chock full of ... sigir2009.org

"Search" to "Discovery"

NEW Corp - Extended Service contracts, Extended warranties

value odershet service plans, also known as estimated warranties, and customicable lacycle solutions for the antine core

Caneers	Consumer
Contact Us	Manufacturer
About Us	Wineless.
Service Plan FAQs	Customer Care
Show more results from every	newcorp.com

67 15 2011 Los Hoter, Chief Executive Officer of Dox 3

to Part of Something NEW Founded in 1983. NEW has built a world-class organization dedicated to rowing innovative and comprehensive customer care solutions and delivering new measure convindes phylogram

Challenges

Infeasible to ask Web users to explicitly rate Web site

 Not all the traditional methods can be directly applied to the Web site recommendation task

• Can only take advantages of implicit user behavior data

Motivations

 A Web user's preference can be represented by how frequently a user visits each site

 Higher visiting frequency on a site means heavy information needs while lower frequency indicates less interests

 User-query issuing frequency data can be used to refine a user's preference

Using Clicks as Ratings

ID	Query	URL
358	facebook	http://www.facebook.com
358	$\mathbf{r}\mathbf{w}\mathbf{w}$	http://www.readwriteweb.com
3968	iphone4	http://www.apple.com
3968	ipad	http://www.apple.com

			V	Veb si	tes						Qu	eries		
		v_1	v_2	v_3	v_4	v_5	v_6			Z_1	Z_2	Z_3	Z_4	Z_5
s	u_1		68	1		15			u_1	12		5	6	
users	u_2	42			13		24	users	<i>u</i> ₂		23		5	1
Webı	u_3		72	12		11	2	Web u	<i>u</i> ₃		14		35	18
M	u_4	15			33			M	u_4	25		11	4	
	u_5		85	45			63		u_5		12	5		24

Probabilistic Factor Model

- 1. Generate $u_{ik} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 2. Generate $v_{jk} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 3. Generate y_{ij} occurrences of item or event j from user i with outcome $y_{ij} = \sum_{k=1}^{d} u_{ik} v_{jk}$.
- 4. Generate $f_{ij} \sim \text{Poisson}(y_{ij})$.

$$p(U|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{i=1}^{m} \prod_{k=1}^{d} \frac{u_{ik}^{\alpha_k - 1} \exp(-u_{ik}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$
$$p(V|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{j=1}^{n} \prod_{k=1}^{d} \frac{v_{jk}^{\alpha_k - 1} \exp(-v_{jk}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$
$$p(F|Y) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{y_{ij}^{f_{ij}} \exp(-y_{ij})}{f_{ij}!}$$

$$p(U, V|F, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto p(F|Y)p(U|\boldsymbol{\alpha}, \boldsymbol{\beta})p(V|\boldsymbol{\alpha}, \boldsymbol{\beta})$$
$$\mathcal{L}(U, V; F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_{k} - 1)\ln(u_{ik}/\beta_{k}) - u_{ik}/\beta_{k})$$
$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_{k} - 1)\ln(v_{jk}/\beta_{k}) - v_{jk}/\beta_{k})$$
$$+ \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij}\ln y_{ij} - y_{ij}) + \text{const.}$$

Probabilistic Factor Model

$$\mathcal{L}(U,V;F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_k - 1) \ln(u_{ik}/\beta_k) - u_{ik}/\beta_k) + \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_k - 1) \ln(v_{jk}/\beta_k) - v_{jk}/\beta_k) + \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij} \ln y_{ij} - y_{ij}) + \text{const.}$$

$$u_{ik} \leftarrow u_{ik} \frac{\sum_{j=1}^{n} (f_{ij} v_{jk} / y_{ij}) + (\alpha_k - 1) / u_{ik}}{\sum_{j=1}^{n} v_{jk} + 1 / \beta_k}$$
$$v_{jk} \leftarrow v_{jk} \frac{\sum_{i=1}^{m} (f_{ij} u_{ik} / y_{ij}) + (\alpha_k - 1) / v_{jk}}{\sum_{i=1}^{m} u_{ik} + 1 / \beta_k}$$

Collective Probabilistic Factor Model

Dataset

- Anonymous logs of Web sites visited by users who opted-in to provide data through browser toolbar
- URLs of all the Web sites are truncated to the site level
- After pruning one month data, we have 165,403 users, 265,367 URLs and 442,598 queries
- User-site frequency matrix has 2,612,016 entries, while in user-query frequency matrix has 833,581 entries

Table 2: Statistics of User-Site and User-Query Frequency Matrices

Statistics	User-Site Frequency	User-Query Frequency				
Min. Num.	4	10				
Max. Num.	9,969	4,693				
Avg. Num.	20.33	23.05				

Performance Comparison

Table 5. Terrormance Comparison (Dimensionality = 10)										
Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM	
	NMAE	2.246	1.094	0.488	0.476	0.465	0.440	0.432	0.427	
90%	Improve	80.98%	60.96%	12.50%	10.29%	8.17%	2.95%	0.452	0.421	
3070	NRMSE	3.522	2.171	0.581	0.570	0.554	0.532	0.529	0.520	
	Improve	85.24%	76.05%	10.50%	8.77%	6.14%	2.26%	0.529	0.020	
	NMAE	2.252	1.096	0.490	0.478	0.468	0.441	0.434	0.428	
80%	Improve	80.99%	60.95%	12.65%	10.46%	8.55%	2.95%	0.404	0.440	
8070	NRMSE	3.714	2.159	0.584	0.571	0.560	0.533	0.530	0.520	
	Improve	86.00%	75.91%	10.96%	8.93%	7.14%	2.44%	0.000	0.020	

Table 3: Performance Comparison (Dimensionality = 10)

Table 4: Performance Comparison (Dimensionality = 20)

Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM
90%	NMAE	2.246	1.094	0.469	0.460	0.449	0.426	0.413	0.409
	Improve	81.79%	62.61%	12.79%	11.09%	8.91%	3.99%	0.415	0.409
3070	NRMSE	3.522	2.171	0.568	0.556	0.542	0.521	0.503	0.496
	Improve	85.92%	77.15%	12.68%	10.79%	8.49%	4.80%	0.000	0.400
	NMAE	2.252	1.096	0.470	0.462	0.451	0.427	0.415	0.410
80%	Improve	81.79%	62.59%	12.77%	11.26%	9.09%	3.98%	0.415	0.410
80%	NRMSE	3.714	2.159	0.570	0.558	0.545	0.522	0.504	0.498
	Improve	86.59%	76.93%	12.63%	10.75%	8.62%	4.60%	0.004	0.490

Impact of Parameters

Figure 7: Impact of Parameter β_k in PFM

Impact of Parameters

Figure 8: Impact of Parameter θ in CPFM

Concluding Remarks

- Social recommendation extends traditional models and techniques by using social graphs, ensembles, distrust relationships, clicks, etc.
- Fusing of social behavior information, e.g., social relationships, personal preferences, media consumption patters, temporal dynamics, location information, etc. provides better models for social recommendations

References

- J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In ICML, 2004.
- J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43–52, 1998.
- M. Deshpande and G. Karypis. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.
- J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In SIGIR, pages 230–237. ACM, 1999.
- J. L. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr., 5(4):287–310, 2002.
- G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Distributed Systems Online, 4(1), 2003.

References

- H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for collaborative filtering. In SIGIR, pages 39–46, 2007.
- H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: social recommendation using probabilistic matrix factorization. In CIKM, pages 931–940, 2008.
- H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In SIGIR, pages 203-210, 2009.
- H. Ma, M. R. Lyu, and I. King. Learning to recommend with trust and distrust relationships. In RecSys, pages 189-196, 2009.
- B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285–295, 2001.
- R. Salakhutdinov, and A. Mnih. Probabilistic Matrix Factorization. In NIPS, 2007.
- D. D. Lee, and H. S. Seung. Algorithms for Non-negative Matrix Factorization. In NIPS, pages 556-562, 2000.

